Electronics, Free Full-Text

Por um escritor misterioso
Last updated 04 fevereiro 2025
Electronics, Free Full-Text
In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.
Electronics, Free Full-Text
Electronics 100 Icons Universal Set for Stock Vector - Illustration of smart, telephone: 159345901
Electronics, Free Full-Text
Rise & Refuel October Free Group Guide for Bodi Partners - Finland
Electronics, Free Full-Text
Feishell Magnetic Clear Case with Camera Lens Film Protection for iPhone 13 Pro Max 6.7 Inch,Compatible with MagSafe Wireless Charging,Stylish Plating Shockproof Transparent Slim Phone Case,Pink
Electronics, Free Full-Text
AEM Electronics 30-3300 AEM Electronics Water/Methanol Injection Kits
Electronics, Free Full-Text
Universal Electronics Hits Sustainability Milestones in Time for Earth Day
Electronics, Free Full-Text
SIMBA Announces Power Electronics Public Beta Release - New Industry Products
Electronics, Free Full-Text
Digital Electronics: A Primer
Electronics, Free Full-Text
Aaron Tay's Musings about librarianship : The open access aggregators challenge — how well do they identify free full text?
Electronics, Free Full-Text
Big Gift Full Of Consumer Electronics With Clipping Paths Stock Photo - Download Image Now - iStock
Electronics, Free Full-Text
Industrial Electronics By Gk Mithal Free - Colaboratory
Electronics, Free Full-Text
Electronics, Free Full-Text
Electronics, Free Full-Text
Interquip

© 2014-2025 citytv24.com. All rights reserved.