PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture

Por um escritor misterioso
Last updated 20 março 2025
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
A fully automatic methodology to handle the task of segmentation of gliomas in pre-operative MRI scans is developed using a U-Net-based deep learning model that reached high-performance accuracy on the BraTS 2018 training, validation, as well as testing dataset. Brain tumor segmentation seeks to separate healthy tissue from tumorous regions. This is an essential step in diagnosis and treatment planning to maximize the likelihood of successful treatment. Magnetic resonance imaging (MRI) provides detailed information about brain tumor anatomy, making it an important tool for effective diagnosis which is requisite to replace the existing manual detection system where patients rely on the skills and expertise of a human. In order to solve this problem, a brain tumor segmentation & detection system is proposed where experiments are tested on the collected BraTS 2018 dataset. This dataset contains four different MRI modalities for each patient as T1, T2, T1Gd, and FLAIR, and as an outcome, a segmented image and ground truth of tumor segmentation, i.e., class label, is provided. A fully automatic methodology to handle the task of segmentation of gliomas in pre-operative MRI scans is developed using a U-Net-based deep learning model. The first step is to transform input image data, which is further processed through various techniques—subset division, narrow object region, category brain slicing, watershed algorithm, and feature scaling was done. All these steps are implied before entering data into the U-Net Deep learning model. The U-Net Deep learning model is used to perform pixel label segmentation on the segment tumor region. The algorithm reached high-performance accuracy on the BraTS 2018 training, validation, as well as testing dataset. The proposed model achieved a dice coefficient of 0.9815, 0.9844, 0.9804, and 0.9954 on the testing dataset for sets HGG-1, HGG-2, HGG-3, and LGG-1, respectively.
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Computers, Free Full-Text
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
PDF) UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Brain MRI Segmentation Using Pretrained 3-D U-Net Network - MATLAB & Simulink - MathWorks Benelux
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
3D MRI Brain tumor segmentation, U-NET
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Diagnostics, Free Full-Text
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Computers, Free Full-Text
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Brain Tumor Detection and Segmentation using UNET by IRJET Journal - Issuu
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
PDF] Optimal acquisition sequence for AI-assisted brain tumor segmentation under the constraint of largest information gain per additional MRI sequence by Raphael M. Kronberg, Dziugas Meskelevicius, Michael Sabel, Markus Kollmann, Christian Rubbert
PDF] Brain Tumor Segmentation of MRI Images Using Processed Image Driven  U-Net Architecture
Brain Tumor Segmentation with U-Net in Python: A Deep Learning Approach, by Lyron Foster

© 2014-2025 citytv24.com. All rights reserved.